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Noncollinear magnetism in the high-pressure hcp phase of iron
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The magnetic structure of iron in its high-pressure hcp phase has been investigated with the full-potential
augmented plane wave with local orbitals method that allows for noncollinear magnetism. In our study we
consider different spin spiral structures and three antiferromagnetic configurations that have been previously
discussed in the literature. We found that some of the magnetic structures are only metastable, and that a
nonsymmetric incommensurate spin spiral state with wave vector q=(0.56,0.22,0)27/a and two different
antiferromagnetic structures are the most stable ones being almost degenerate around the equilibrium volume.
These magnetic structures ought to exist in the pressure range where hcp iron becomes stable.

DOI: 10.1103/PhysRevB.78.064410

I. INTRODUCTION

Recently, Shimizu et al.! reported superconductivity (SC)
below 2 K in the high-pressure hexagonal close-packed (hcp)
phase of iron. The superconducting pressure range was found
to be between 15 and 30 GPa (66 <V <72 a.u.’/atom). This
finding is of course surprising since conventional SC is in-
compatible with even a small amount of magnetic impurities.
Iron, the most common ferromagnet, orders ferromagneti-
cally at ambient conditions in the body-centered-cubic struc-
ture. When applying pressure (~13 GPa) iron undergoes a
phase transition to the hcp structure which is believed to be a
nonmagnetic phase.> However, even if true long-range mag-
netic order is not established, the strong magnetic fluctua-
tions present in materials close to magnetic phase transitions
are known to suppress conventional SC. Hence, the origin of
the SC in iron is being extensively debated.>*

Spin fluctuations have been discussed before>® as media-
tors of SC in nearly magnetic materials, the so-called uncon-
ventional SC. By means of first-principles calculations,
Mazin et al.* argued that the onset of SC in hcp iron can be
explained by the conventional phonon mechanism’® but not
its sudden disappearance at pressures greater than 30 GPa.
They concluded that magnetic fluctuations may play an im-
portant role in the superconducting phase of iron.

Total-energy calculations, based on density-functional
theory (DFT),%!? showed that two antiferromagnetic (AFM)
structures (see Fig. 1) are lower in energy than that of the
nonmagnetic configuration at elevated pressures in the hcp
phase of Fe. Furthermore, by allowing for magnetism, a bet-
ter agreement between the calculated and experimental equa-
tion of state and elastic constants was obtained compared to
the nonmagnetic quantities. A first-principles-based tight-
binding total-energy model'! was used to investigate noncol-
linear spin configurations and these calculations were com-
pared to the two AFM structures, previously considered in
Ref. 9. One of the AFM structures resulted to be more stable
than the noncollinear states for pressures above 13 GPa.

DFT calculations of the temperature-dependent static
paramagnetic spin susceptibility were performed for the
high-pressure phase of iron.'? It showed that there are strong
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magnetic fluctuations in the hcp phase, consistent with the
conjecture in Ref. 4. This study found that the dominant
fluctuations are incommensurate and antiferromagnetic, char-
acterized by the wave vector (0.56,0.22,0)27/a. At low
temperature, they result in an ordered spin spiral state. Re-
cent calculations!® show that interatomic pair exchange in-
teractions favor antiferromagnetic interplane stacking of the
basal hcp planes. At the same time, nearest-neighbor in-plane
exchange interaction parameters are also strongly antiferro-
magnetic. This should lead to magnetic frustration in the
planar triangular lattice of hcp Fe. In contrast to these theo-
retical predictions, Mossbauer measurements'#~1® and x-ray
magnetic circular dichroism experiments'”!® on hcp iron
have found no evidence of long-range magnetic order.

We present here full-potential calculations for several
noncollinear structures such as spin spirals (SSs), the two
AFM structures shown in Fig. 1, and the ferromagnetic (FM)
configuration. In addition we have performed calculations
for the nonsymmetric spin spiral with wave vector q
=(0.56,0.22,0)27/a and a third AFM configuration
(AFM __ MI) characterized by the wave vector ¢
=(1/+3,1/3,0)27/a as suggested by the susceptibility cal-
culations in Ref. 12. In that study, the AFM (III) structure
turned out to be more stable than the AFM (I) and AFM (II)
structures; however, a maximal peak in the spin susceptibil-
ity was obtained for the SS with q=(0.56,0.22,0)27/a. Our
present investigation has been motivated by the theoretical
evidence of magnetism, the prediction of an incommensurate
magnetic structure,*!? and its possible relation to the uncon-
ventional SC in hcp iron.

II. METHOD

In this study the full-potential all-electron augmented
plane wave with local orbitals method'®?° has been utilized
within the generalized gradient approximation (GGA).2! This
approach has been extensively employed in studies of non-
collinear systems, e.g., fcc iron?>?? and the rare earths.?3?*
This method does not impose any restrictions to the shape of
the magnetization density and therefore it allows for intra-
noncollinearity as well as internoncollinearity. It also incor-
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FIG. 1. The AFM structures denoted by I and II in Ref. 9 are
shown in the (a) left and (b) right panels of the figure, respectively.
The gray balls are in the ab plane of the hexagonal structure (z
=1/4) and the darker balls liec at z=3/4. The AFM (I) consists of
ferromagnetically ordered planes, perpendicular to the z axis, which
alternate the direction of the spin. In the AFM (II) the planes are
perpendicular to the x axis.
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porates the symmetries of the SS (Ref. 23) in order to accu-
rately calculate the total energies for various magnetic states
in hep Fe. From careful convergence tests with respect to the
Brillouin-zone (BZ) sampling and the size of the basis set,
we have determined that it is necessary to use a basis set
cutoff corresponding to a largest reciprocal space lattice vec-
tor of 4.8 a.u.”! and a k-point mesh of 12X 12X 10.

III. RESULTS AND DISCUSSION

In the present investigation we performed calculations for
three values of the hcp structural parameter c/a=1.58, 1.59,
and 1.60. In the following we will focus on the results for
c/a=1.58. In Fig. 2 we display the calculated atomic mag-
netic moments for the two AFM configurations described in
Fig. 1, the AFM (II) characterized by the wave vector q
=(1/V3,1/3,0)27/a, the nonsymmetric SS q
=(0.56,0.22,0)27/a, a SS with q=(0.68,0.06,0)27/a, and
the ferromagnetic state. The results for the two antiferromag-
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FIG. 2. Calculated atomic magnetic moments as a function of
the atomic volume for the AFM (I), (II), and (III) configurations, the
nonsymmetric ~SS  with  q=(0.56,0.22,0)27/a and q
=(0.68,0.06,0)27/a and the high-spin ferromagnetic state. The
scale in the upper x axis shows the values of the pressure for the
respective atomic volumes as obtained in Ref. 25 by a third-order
finite strain fit to the hydrostatic data for the hcp phase of Fe and it
is only included here as a reference.
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FIG. 3. In the upper panels the calculated total energies per atom
of hep Fe for volumes V=74, 76, and 80 a.u.3/atom are plotted as
a function of the wave vector q along two directions of the BZ,
[100] (left panel) and [001] (right panel). The arrows indicate the
AFM structures, I and 11, described in Fig. 1. In the lower panels,
the calculated atomic magnetic moments as a function of the wave
vector q along the same two directions as in the upper panels are
shown. The low-spin solution is shown by a dashed line.

netic and ferromagnetic states agree very well with those
obtained in Ref. 10, which is an erratum of Ref. 9. The
ferromagnetic state shown in Fig. 2 corresponds to the high-
spin solution and the magnetic moment has a maximum
value of 2.72uz/atom at a volume of 90 a.u.’/atom. The
AFM (I) phase exists only for volumes larger than
72 a.u.’/atom. The AFM (II), (III), and the nonsymmetric
SS have almost the same atomic magnetic moment in the
range of volumes of 60—90 a.u.’ Magnetic solutions do not
seem to exist for volumes smaller than 60 a.u.?/atom which
corresponds to a pressure of ~65.8 GPa.

We investigated SS solutions along two directions of the
hexagonal hcp BZ, [100] and [001]. In the upper panels of
Fig. 3, the calculated total energies of hcp Fe for several
volumes are plotted as a function of the wave vector q along
[100] (left panel) and [001] (right panel). We have chosen to
show in this figure volumes around the zero-pressure volume
of the hcp phase that was estimated by extrapolation of ex-
perimental data to be 75.4 a.u.®/atom.>>?° It is well known
that iron in the fcc structure possesses the so-called high- and
low-spin ferromagnetic states. Here, we also found ferro-
magnetic high-spin (full line) and low-spin (dashed line)
states in hcp Fe for V=80 a.u.’> The AFM (I) configuration is
represented by a wave vector q=(0,0,1)27/c (shown with
an arrow, right panel in Fig. 3) and consists of ferromagneti-
cally ordered planes perpendicular to the z axis that alternate
the direction of spin. In the AFM (II) phase, these planes are
perpendicular to the x axis (see Fig. 1) and the magnetic
structure corresponds to a wave vector q=(1,0,0)27/a.

We can see in the right upper panel of Fig. 3 that along
the [001] direction there is a minimum at q
~(0,0,0.6)27/ ¢ which represents a SS where the parallel
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FIG. 4. The calculated total energy of hcp Fe in the SS state
with q=(0.56,0.22,0)27/a (circles), paramagnetic (stars), AFM
(IM) (squares), AFM (II) (up triangles), AFM (I) (down triangles),
the SS state with q=(0,0,0.6)27/c (left triangles), and a SS state
with q=(0.68,0.06,0) (diamonds) are plotted as a function of the
atomic volume. The zero of the energy was chosen to be the energy
of the paramagnetic state at V=60 a.u.>.

spins within a plane are rotating around the hexagonal axis
with an angle ¢p=¢gc=0.627~216°. The SS characterized by
this q vector is then more stable than the AFM (I) structure
for all volumes considered here. As the atomic volume be-
comes smaller this minimum gradually disappears. The low-
spin FM solution also tends to die out and become nonmag-
netic. For volumes smaller than 76 a.u.’/atom, small q
wave-vector states, i.e., q~ 0, along the [001] direction do
not exist. However, the AFM (II) configuration along the
[100] direction (shown by an arrow, left panel) is always the
most stable state for all volumes. Steinle-Neumann et al.'!
investigated noncollinear configurations by using a tight-
binding total-energy model and their results showed that the
AFM (II) structure is more stable than the noncollinear struc-
tures studied by them. This is consistent with our findings
although the noncollinear configurations considered by
Steinle-Neumann et al.!! are not the same noncollinear struc-
tures presented in this study.

In the lower panels of Fig. 3, we show the magnetic mo-
ments for several volumes along the same directions in the
BZ as in the upper panels. For the largest atomic volume
considered (V=80 a.u.?), the high-spin and low-spin atomic
magnetic moments are 2.55up and 1.58 up, respectively. The
low-spin moment becomes zero for V<76 a.u.’ along the
[001] and [100] directions.

In Fig. 4 the calculated total energies of hcp Fe in the
AFM (II) (up triangles), AFM (I) (down triangles), and
AFM (III) (squares), the nonsymmetric SS with q
=(0.56,0.22,0)27/a  (circles), the SS with q
=(0.68,0.06,0)27/a (diamonds), the SS with q
=(0,0,0.6)27/¢ (left triangles), and the paramagnetic state
(stars) are plotted as a function of the atomic volume. The
paramagnetic curve has a minimum at 68.87 a.u.?/atom and
agrees well with calculations in Ref. 9. In this figure we can
see that already for atomic volumes larger than 66 a.u.?,
corresponding to a pressure of ~27.8 GPa,?>>?% magnetic so-
lutions have lower energies than the paramagnetic one. The
AFM (1), (IM), and the nonsymmetric SS with q
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TABLE I. Equilibrium volumes and energy differences for the
AFM (I), (1), and (I1I), 9=(0.56,0.22,0)27/a, q=(0,0,0.6)27/c,
q=(0.68,0.06,0)27/a, and the paramagnetic state. The energy of
the paramagnetic state of the present calculations at V=60 a.u.,
E=-2546.2719 Ry, was used as reference to compute the energy
differences (see Fig. 4).

Energy difference Volume

(mRy) (a.u.’/atom)

GGA paramagnetic -15.24 68.87
GGA AFM (D) -15.14 68.85
GGA AFM (1) —-17.00 70.64
GGA AFM (I11) -16.8 70.4

GGA q=(0.56,0.22,0) -16.93 70.62
GGA q=(0,0,0.6) -15.18 68.88
GGA q=(0,68,0.06,0) -15.62 70.1

=(0.56,0.22,0)27/a appear to be almost degenerate in the
whole range of studied volumes with equilibrium volumes
70.64, 70.4, and 70.62 a.u.?, respectively. At the equilibrium
volume, the AFM (II) configuration is only ~0.1 and
~0.2 mRy lower in energy than the nonsymmetric SS and
the AFM (III), respectively. The paramagnetic spin suscepti-
bility calculations in Ref. 12 suggested that the most stable
magnetic structure was the SS with q=(0.56,0.22,0)27/a,
followed by the AFM (III) and the AFM (II) in ascending
order. However, the present total-energy calculations show
that these structures are indeed much closer in energy, almost
degenerate. The spin susceptibility calculations were per-
formed using the atomic sphere approximation that might
produce different results?’” than a full-potential code when
the energy differences between magnetic structures are very
small and hence the accuracy required to distinguish between
them is high.

The AFM (I) phase and the SS with q=(0,0,0.6)27/c
exist only for volumes greater than 72 a.u.3, where they both
have lower energies than the nonmagnetic state. We have
listed in Table I the equilibrium volume and the energy for
the equilibrium volume with respect to the energy of the
paramagnetic state at V=60 a.u.? for the paramagnetic, the
AFM (III), (I1) and (I), and some SS states. The equilibrium
volume for the AFM (I) and AFM (II) configuration compare
reasonable well with the results of previous first-principles
calculations.”!! Our results also concur with the statement in
Ref. 9 that magnetic solutions are more stable than the para-
magnetic state. We would like to point out here that magnetic
structures appear to be more stable than the paramagnetic
state for volumes larger than 66 a.u.?, which corresponds to
a pressure of the order of ~28 GPa; around the same pres-
sure in which the superconducting state vanishes (30 GPa).
In particular, the noncollinear spin spiral with q
=(0.56,0.22,0)27/a was shown!? to be related to Fermi-
surface features; a fact that has been discussed before?® as a
necessary condition for noncollinear magnetism to exist. All
these findings lead us to speculate that strong magnetic fluc-
tuations may indeed be responsible for the superconducting
state in hcp Fe and a noncollinear structure may be the mag-
netic ground state for hcp Fe.
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IV. CONCLUSIONS

We have investigated the magnetic structure of hcp Fe
under pressure by performing first-principles total-energy
calculations. Spin spirals were considered in this study along
two symmetry directions of the BZ, [001] and [100]. The end
points of the symmetry lines corresponds to the two antifer-
romagnetic structures (I and II) that have previously been
reported by theory to exist in the hcp phase of Fe. A non-
symmetric spin spiral with wave vector (0.56,0.22,0)27/a
was also studied. Calculations of the temperature-dependent
susceptibility in Ref. 12 suggest that this incommensurate
structure is a good candidate to be the magnetic structure of
hcp Fe. Our results show three, almost degenerate states, to
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have the lowest energy. The AFM (III), (II), and a nonsym-
metric spin spiral with q=(0.56,0.22,0)27/a are the most
stable structures with a magnetic moment of ~1up/atom
and an equilibrium volume of 70.6 a.u.?
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